Building with LLMs

Thanks to the recent wave of large language models
(LLMs), anyone can now build generative Al applications
with impressive communication and reasoning
capabilities. If an organization wants to stay competitive
in this climate, it needs to start thinking about how to use
LLMs to deliver the best possible user experience.

As aresult, Al teams across industries are in a race to
incorporate LLM capabilities into their products. This
guide is designed to help developers and data scientists
understand the workflow involved in bringing a state-of-
the-art generative Al system to production. It introduces
basic concepts from the world of LLMs in accessible
language, and presents the tools to design, build, and
maintain an end-to-end application that's driven by
large language models.

E!— deepset

Generative Al, retrieval augmentation, semantic search engines,
and much, much more: LLMs are here to make all of our lives
easier. But while the tools to set up an LLM-powered prototype
for virtually any kind of use case are all out there, overseeing a
project that implements a system end to end — from its inception
to the final product that your users interact with — can seem like
a daunting task for developers.

E Large language models gained fame well beyond the usual NLP
1 (natural language processing) bubble through the introduction of
: the ChatGPT user interface. While many other types of models are
: technically large language models, the term has become nearly
: synonymous with a particular type of generative language model
1 such as GPT models, Llama 2, and similar. These are language
1 models that leverage the Transformer neural network architecture,
1 like all state-of-the-art models, and that are trained on huge
: amounts of textual data. Unlike smaller Transformer models such
1 as BERT, LLMs are called large because they have billions or even
:
1

trillions of parameters. !i

Our previous ebook (“NLP for Product Managers”) provided an
in-depth introduction to the topic of natural language
processing in general, and to the task of managing a team
looking to implement a system powered by language models in
particular. We recommend checking it out if you want to get up
to speed on concepts like language modeling or Transformer
models. This book, on the other hand, looks at the process of
building with LLMs from a practical angle — focusing on the
process of designing, improving, and shipping the system itself.

If youre an ML engineer or a data scientist tasked with
implementing an LLM-based system, you'll likely have lots of

questions:

B Dol need tounderstand all the intricacies of large language

models?

B How can | work around the limitations of the context window?

B How can | decide on the best model for my use case?
What are the other things | need to pick and refine?

B How do | build a prototype that can be scaled to

a production-ready system?

B How can | compare different pipeline designs and prompts to
find those that work best for me?

B How can | collaborate with
DevOps and back-end
engineers on my team
towards the final
deployment of the LLM
system?

any of these questions, then

]
]
[]
1
1
n
[]
]
]
[]
n
1
If you have ever asked yourself |
]
[]
this book is for you. '
n

n

]

]

[]

1

1

n

[]

o)

00O
[e M)

Prompting

During training, LLMs have
learned to complete a prompt
in the best possible way. This is
how they work during
inference (querying) too: given
a prompt, they try to generate
the output that best completes
it. That’s why, to gain the best
results, it is important that you
prompt your model in the most
helpful and systematic manner
— so important, indeed, that it
has given rise to a new
discipline in machine learning,
dubbed prompt engineering.

As the company behind Haystack and deepset Cloud, we at
deepset are determined to enable the adoption of LLM-based
products in all organizations that work with text data in some
form. We see it as one of our core tasks to educate and
empower the different people involved in the workflow of
building with LLMs. By giving developers the tools to set up their
own systems, we hope to see more organizations benefit from
the incredible advances that the field of language modeling has
undergone in the past couple of years.

In this book, we will go over the different processes that are
essential to successfully setting up an LLM-powered system in
production. After a brief introduction to the LLM ecosystem, we
will look at the entire software development lifecycle from a
high-level perspective, and finally dive into each aspect
separately — from designing the pipeline and refining the
prompt to deploying the LLM-powered pipeline to production.

Contents

O] The ecosystem of an LLM application

An overview of basic concepts for building with LLMs

02 The implementation cycle for LLM-powered systems

Learn about the different stages of LLM implementation

03 A language model overview

LMs, LLMs, and embedding models — what's the difference?

04 Designing the pipeline

How pipelines work —and why you should use them

05 Choosing the right model and prompt

A guide to model selection and prompting

06 Prototyping
How to build and deploy prototypes quickly

07 Testing and evaluation

Measure the quality of your system with metrics and feedback

08 Deployment and monitoring

Keep your system relevant through continuous re-evaluation

09 Learn more

Alist of online resources for a deeper dive

05

09

22

27

30

33

39

E!—deepset

05

THE ECOSYSTEM OF
AN LLM APPLICATION

People just learning about LLMs are sometimes intimidated by
the complexity of these large, Transformer-based language
models. But when we talk about building with LLMs, we can
often ignore the complex math and advanced architectural
decisions that go into training these models. That’s because for
most use cases it is not needed to train an LLM from scratch.

Rather, building with LLMs requires choosing from a vast and
ever-growing selection of pretrained models, some of which are
proprietary, while others are open source. Thanks to model
sharing, you can go to centralized locations like the Hugging
Face model hub, where tens of thousands of pre-trained models
are freely available. You can also use an interface like OpenAl’s
API to access their language models without even leaving your
IDE. Due to this ease of sharing, everyone can benefit from the
huge leaps that LLM research and development have made
since the inception of the Transformer architecture for language
modeling.

But an LLM alone does not make a production-ready
application. Depending on the nature of your application, you'll
also need data stores, smaller embedding models, prompts, and
the hardware to run your system in production.

The ecosystem of an LLM application

06

That’s why frameworks for building with LLMs assist their users
with everything needed to set up and deploy a system that

embeds LLMs, such as:

- Developing demo-ready prototypes without model lock-in,
making it easy to update your system with the newest and
most suitable LLMs if you see a decay in performance of your

system in production.

- Connecting to different (vector) databases, offering
embedding models for RAG applications, and making it easy

to compare different models and prompts.

- Flexibly letting you adjust your pipeline to contain additional

components, such as a prompt injection classifier or a model
to detect hallucinations.

- Providing the building blocks to set up modular, customized
LLM pipeline infrastructure.

- Offering the tooling required for evaluating and improving
your prototypes and deploying them to production.

Retrieval augmented generation (RAG)

1

1

1

! LLMs learn a faithful representation of their training data. However,
1 that data has a cutoff date and overall doesn’t contain all the
. specific knowledge needed in many enterprise applications.
1 Luckily, we can provide additional context to the LLM in our prompt
: in the shape of our own company-owned data, and instruct the
1 model to base its responses on that. In retrieval augmented
: generation (RAG), we delegate the context-finding step to a
1 retrieval module. Its task is to identify the documents that are most
1 likely to contain the relevant information and include those in the
: prompt together with the user’s query.

The ecosystem of an LLM application

07

In the context of an LLM application, pipelines are composite
units that are used for indexing (writing documents and their
vectors into databases) and for inference (querying).

Indexing pipelines are particularly relevant in a RAG context
(retrieval augmented generation) or for other applications, such
as semantic search or file similarity — basically, whenever you
want to work with your own data, you need to index that data
into a database to make it available for your LLM-powered
application. The indexing pipeline helps you achieve this by
preprocessing and cleaning the raw files, before turning them
into documents, then into indexable vectors.

Query pipelines handle the logic of inputting a natural-
language query, transforming it in one or multiple steps, and
outputting the result. The great benefit of pipelines is that they
allow developers to compare different setups, build and test
prototypes quickly, and later hand those prototypes over to a
back-end engineer for final implementation.

o

iﬂ Your

r
]
[]
]
L}
1
[]
[]
]
[]
: (=_ database
[

The ecosystem of an LLM application

08

In addition to different readymade pipeline designs for indexing
and querying (as well as the option to adapt those, or design
your own from scratch), LLM frameworks also offer interfaces to
the various locations where pre-trained models are hosted, such
as the APIs of different proprietary LLM providers or the Hugging
Face model hub, where open source models are shared. This
means you can simply plug different models into your query
pipeline and look at the results to find out what works best for
you.

e e el 1
1 1
1 .--SageMaker. 1
: E-Hugging Face model hub-g‘*.\‘ g OpenAl AP] -------- ; :
' H HE H]
s DI e | e e
1 . - N 1
] : 1
1 1
]]
] 1
1 1
]]
] 1
] 1
1 1
S |

Besides open source libraries and frameworks, there are also
managed solutions for implementing projects with LLMs. Such
solutions provide a more approachable and user-friendly way
to set up a working system in production. The user interface
makes it easy to implement and compare different system
configurations, to collect feedback from end users early in the
process, and to serve and deploy the final LLM application.

Let’s now have a look at the implementation cycle of an LLM-
powered system as a whole.

The ecosystem of an LLM application

09

THE IMPLEMENTATION CYCLE
FOR LLM-POWERED SYSTEMS

The NLP implementation process consists of two parts. In the
prototyping phase, the developer sets up a working prototype
pipeline and experiments with different configurations. When
building with LLMs, we usually opt for rapid prototyping: a
workflow in which an early system gets developed and
deployed quickly, to make sure that we can test it with real users
and collect their feedback very early on in the process. This
allows us to iterate through prototypes quickly, constantly
improving and refining our system — and prevents us from
spending months on building a complex system that turns out
not to solve our problem.

Once the cycle of prototyping, deployment, and user feedback
has produced a satisfactory prototype system, the Al engineer
or data scientist who developed the system hands it over to an
MLOps (machine learning operations) engineer. MLOps
engineers concern themselves with how to deploy a system to
production in the most robust, reproducible, and cost-saving
way. Plus, once the LLM-powered application is running in
production, MLOps makes sure that it is monitored continuously,
taking care of fixing and updating the system when its
performance plummets. For instance, in the fast-paced world of
LLMs, a more powerful new model might quickly arrive on the
scene, making it necessary to swap an existing model for it.

Both the prototyping and the MLOps phase therefore heavily
feature the testing and evaluation of pipelines, both
quantitatively and qualitatively. Only by periodically testing
your system on real-world data and with real users can you
make sure that it remains up to date.

The implementation cycle for LLM-powered systems

User feedback

1
1
1
Rather than following the sequential data science model of :
finalizing a system before deploying and sharing it with end users,
modern machine learning projects make user feedback an :
essential element of the development lifecycle. In the old model, it :
could very well happen that after months of development, you :
would realize that your final product wasn’'t solving your users’ 1
actual problem. By involving an example group of end users early :
on, you can analyze their feedback to improve your system — for :
instance, by refining your prompt, changing your LLM, or improving :
your model for retrieval. :

Let’s take a bird’s-eye view of the different phases of the
implementation process, before we move on to look at each of
the following topics in more detail.

Prototyping

B Design your pipeline. Here, you think about what you want

your system to achieve. Does it need to generate answers
based on the documents in your database? Is it crucial that it
returns the most relevant document as its first result?
Consider potential future use cases as well, so that the
pipeline will be flexible and capable of scaling up with your
project.

B Choose the models and your prompt. The design decisions

made in the previous step determine which kinds of LLMs are
suitable for your system. You can pick different proprietary
and open source models and see how they compare to each
other. To come up with an initial prompt, be sure to follow
best practices for prompting. You're likely to refine your
prompt as you proceed through your project.

The implementation cycle for LLM-powered systems

n

M Build the prototype. Instantiate the pipeline with your

preliminary selection of models and connect it to your
database. Now you already have a running system! If you're
looking to experiment with different language models, then
you’ll likely build several pipeline prototypes at this stage.

Experiment, evaluate, and test. This phase serves to find the
best setup for your use case and the resources you have
available. Is the inference fast enough? Accurate enough?
What do your users think about it? You need to deploy a
preliminary system, get it into the hands of your end users,
and collect their feedback. This is particularly important
considering the generative nature of LLMs because it’s hard
to evaluate them in a quantifiable way. If you're leveraging
document retrieval in your pipeline, you'll want to evaluate it
using a representative evaluation dataset. The more energy
and resources you pour into experimentation, the better your
system will become.

Evaluating LLMs
Some language models are harder to evaluate than others. For
example, if a sentiment classifier labels a text as positive while the
correct label is negative, then we can safely say that it made a
mistake. However, when it comes to generating or extracting text, it
isn't always so easy to say what's wrong and what isn't. Your
generative LLM may output a summary that's vastly different from
the "correct" text — but it can be just as good, or even better. That's
why it's important to evaluate LLMs not only quantitatively, but also
qualitatively — by testing them with real-world users.

M Fine-tune your prompt and models. If the LLM isn’t

generating the kind of answers that you're looking for, you
could evaluate and fine-tune your retrieval model (if you're
using one) and tweak the prompt using different methods —
more on that in chapter 5. You could also fine-tune your
generative or extractive language models.

The implementation cycle for LLM-powered systems

12

B Repeat. Having adjusted your prompt, your retrieval setup,
and potentially even your language models, you can follow
this step with another iteration of experimentation,
evaluation, and testing.

MLOps

B Deployment to production. At this stage, you hand your
prototype pipeline over to the DevOps team for deployment
to production. This requires setting up the indexing and query
pipelines and setting up the workflow for data integration.
How does data — both the documents and user queries —
flow into the system? How is it processed? And how is existing
data updated? These processes need to be properly defined
before the pipelines can be deployed.

B Monitoring your system. Machine learning systems in
production are a bit like living things that benefit from
regular health checks. So you need to make sure to monitor
the deployed product, periodically checking the system’s
performance against updated evaluation data sets and
continuing to collect feedback from real users. It's important
to make sure that your system remains up to date and doesn’t
decay. If you notice a dip in your system’s quality, you'll likely
want to go back to refining your prompt, checking if retrieval
works as intended, and whether it’s time to stick a new LLM
into your pipeline. So, in a way, this final phase consists of
periodically repeating the steps outlined earlier — only now,
you’re performing them on a system that’s already been
deployed to production.

The implementation cycle for LLM-powered systems

13

I IR R R e |
Ve 1
1 i 1
1 Prototyping R 1
1 ’ I Continuous monitoring 1
Design pipeline <
1 1
| I Y]
1 Experiment, evaluate, test — 1
1 ': Choose model(s) : /:\ _::-l—) Deploy to production 1
R v ' ; and integrate 1
Update pipeline
1 1
I g 1
.. Build prototype
1 1
| 1
| 1
s s s s s s mmwomomal

The above diagram illustrates why, contrary to most people’s
perceptions, building an LLM-powered system is about much
more than simply using an APl and building a front end. Rather,
the hard work in making these systems production-ready is
about ensuring that you have all the parts you need: the right
models and a way to swap them in and out, a framework to
compose pipelines, and a way to observe and evaluate your
system in practice.

While the process in its entirety may seem a bit overwhelming, it
helps to break it down into neatly defined steps. So in the next
chapters, we'll have a look at each of the various stages of the
implementation process in detail. But first, let’s talk about
language models.

The implementation cycle for LLM-powered systems

14

A LANGUAGE MODEL OVERVIEW

It can be easy to lose track of what’s happening in the field of
language modeling. Even the names we use to refer to it change
rapidly: Al, NLP, or LLMs. To make sure you don’t get lost, we'll
provide a quick overview of the main branches in language
modeling today. Large language models may have stolen the
limelight for now, but there are at least two more categories of
LMs worth keeping on your radar.

LLMs

Large (generative) language models are much bigger than the
previous generation of language models, hence their name
(their size describes the number of trainable parameters). In fact,
they are so big that it’s mostly not feasible to run them locally,
making it necessary to run them on an external cloud provider.
This applies even when dealing with an open source model; but
other models, like GPT, are proprietary anyway, meaning that
you can only communicate with them via a fee-based API. It’s
important to keep in mind that when we talk about LLMs, we
almost always mean generative models — that is, models that
generate well-formed, conversational content in response to a
prompt. This includes writing summaries, translations, and many
other output formats.

Encoder models

Other, smaller language models typically perform more specific
tasks. Described as Transformer models, language models, and
sometimes even LLMs, a model like BERT for instance doesn’t
generate content. Rather, it acts as a language-aware classifier
that can be fine-tuned in different ways.

A language model overview

15

Programmatically, what distinguishes this class of models from
the generative group is that they only have an encoder part, not
a decoder.

A popular category of BERT-based models can do extractive
question answering, which means identifying an answer
passage in a document in response to a query. These models are
always free and open source, and can be downloaded and
fine-tuned locally, on your own machine.

Embedding models

Finally, there’s a family of modest language models that often
flies under the radar, even though its members provide value
daily for billions of people: namely, embedding models. These
Transformers embed text passages as dense vectors. This lets
them encode the semantic information of those texts — that is,
their meaning rather than their lexical form. The vectors are
stored in a database along with the original document, for later
retrieval in an application that leverages semantic vector search
— forinstance, in a RAG scenario.

A language model overview

16

DESIGNING THE PIPELINE

As mentioned earlier, pipelines are a foundational paradigm for
building effective applications with LLMs. They allow engineers
to architect the correct flow of data from your database, all the
way up to an LLM, so as to achieve the desired outcome. How,
exactly, do pipelines accomplish that?

The pipeline paradigm

As we have established in chapter 1, pipelines are system
architectures that combine various components — which are
powered by language models — in a sequential order. For an
example of a minimal pipeline design, consider a simple pipeline
for answer generation. It consists of an input interface for user
queries, a component that provides an interface to an LLM and
prompts the model with the user’s query, and an output interface
that returns the model’s answers to the user’s query. In this setup,
the LLM does not have access to any external data, only the
information it has memorized during training.

=== mmEmEmEmEEEmEEEEEEEEEEEE === ===y

. Simple generative pipeline

Generative component-

Query——+—> H LLM : Answer

While useful for illustration purposes, such an overly simplified
setup is not very useful in practice.

Designing the pipeline

17

What are the advantages of using pipelines?

Most LLM-powered systems in reality are much more complex
than our example above. That's because LLMs are great at
generating answers, but prone to hallucinations — plus, they

your confidential data or
events that happened past
the cutoff date of their
training data. In fact, an
LLM isn’t particularly useful

Hallucinations are “made-up’
answers by an LLM that are not
based on facts and often contain
inaccuracies and factual errors. They
happen because the LLM has been
tuned to output a response and it

on its own for tries to comply even when it doesn’t
enterprise applications. “know” an answer. The best
Rather. it needs to be techniques to combat hallucinations

are RAG, clever prompting, and using
another model to check whether the
LLM’s answers are grounded in the
documents it has seen.

embedded in a complex
system that can leverage
additional data — and that
is where pipelines really
shine.

Datain NLP

As a sub-discipline of machine learning, and, more specifically, deep
learning, modern NLP produces systems whose quality largely
depends on the training data. That's why data-centric practices like
creating high-quality data sets, regularly monitoring the data even
after deployment, and performing qualitative error analyses are vital
tools for the success of a project that leverages language models. The
fact that many for-profit LLM providers use publicly available data
from the internet to train their models has also raised ethical questions.
The unclear provenance of that data means that it can contain biases
and falsehoods. There are also unresolved legal questions with regards
to data that is publicly available but whose license may not permit that
data to be used for training language models.

1
'
1
1
1
1
'
1
1
1

most '
'
1
1
1
'
'
1
1
1
'

don’t know anything about ;

Pipelines allow you to build an architecture around the LLM that

supplies it with the relevant data before generating a response.

Designing the pipeline

18

The main advantage of the pipeline structure is that this
architecture is customizable to virtually any requirement. So, in
our next example, we're going to look at a more involved pipeline
design for retrieval augmented generation (RAG). It leverages
document search to retrieve the right documents from a corpus,
which it then passes on to the LLM as a basis for its answer.

P === = e m e mmmEEmEEEEEEEEEEEE = ===y

. .
' RAG pipeline !
1 1
1 1
1 Component 1 Component 2 Component 3 -Component 4 1
! Query —> i Retrieval i i Ranker E i Prompt E s —5 Answer !
., 1 model 1 model Y. creator } LM ¢ "
1 H H H H H 1
N N T B EEE) AECTEErtrtl B EETEreertl B A ECEE et 1
] 1
1 1
1 Database 1
] =)]

1. They’re easy to build

Our RAG system combines four components: one for retrieval,
one for document ranking, one for prompt creation, and one for
the LLM itself. The pipeline takes care of routing the query to the
first component, whose output then serves as input to the next
component, and so forth. It also allows you to set all of the
components’ parameters — such as how many documents to
return, the prompt template, and the LLM to use — when you first
define the pipeline. By bundling all of these parameters in one
place, the pipeline becomes much more manageable than if you
had to juggle each step individually.

2. They’re easy to reason about

That brings us to the second huge advantage: the pipeline
paradigm allows you to reason about your system as a self-
contained unit, just like the way a complex section of code can
be abstracted away into a function or class and treated as a
single item.

Designing the pipeline

19

When managing your RAG pipeline as part of your final product,
for example, you don’t always need to remember that it uses a
retriever, a ranker, and a custom prompt generator, or which of
those components connects to the database. All you need to
know is that the pipeline receives a query, and, in response,
generates aresponse based on your data.

3. They’re easy to share and document

Like a function or class, a pipeline is also easier to share with
other people in your organization. Most LLM frameworks have a
way of exporting pipelines in some basic file format. If you want
to move your system to production, for example, all you need to
do is export it to a file and hand it over to the respective
engineers. This allows you to reproduce, reuse, and version-
control any pipeline setup.

Black box versus individual components

But while it can be extremely useful to think about pipelines as
self-contained units, it is often necessary to open the black box
and look into the system components separately: during
debugging, model evaluation, or testing. Pipelines make it
possible to isolate each component and inspect its outputs, so
that you remain in full control of your system’s architecture.

- emEmEmm e EmEEEEEEEE =" === === =--=a

O O @ Component 2
Compongnt] \&3

r
1
1
1
1
1
1
1
' :
: Pipeline -----------sssssmrmmmnocennenenonoond
L]

Designing the pipeline

20

Choosing the pipeline design

Your pipeline design should serve your use case. While many
frameworks offer ready-made pipeline architectures, it’s usually
just as simple to set up your own system by connecting
components within a default pipeline object. For example, you
could use a custom design with two branches that lead to
different retrieval methods such as keyword retrieval or
embedding retrieval, or you could even build out your own
custom component that performs translation at the right step of
the pipeline.

To better understand the different ways in which building with
LLMs can benefit organizations in practice, let’s have a look at
the following three model use cases. Although, strictly speaking,
these are hypothetical examples, they are inspired by real-world
use cases that we've encountered over the years.

Use case 1: Combining the power of generative Al
and your own data to create a virtual domain expert

A legal publishing house offers a custom, RAG-powered chat
interface for its clients. Lawyers and other legal professionals
can speed up their research process many times over through
the offering, which generates its responses on the basis of
millions of curated, regularly updated documents from the law
domain.

Designing the pipeline

21

Use case 2: Building a QA system on top of a
database of technical manuals

An aerospace manufacturer has amassed thousands of
manuals for their products over the years. With that much
textual information in private silos, it’s hard for pilots in training
to find the answers to their problems quickly (they can’t just
semantically scan the data set using internet search engines).
Therefore, the company builds an extractive question answering

(QA) Interfoce ------------------------------
Their setup uses a Extractive question answering uses encoder

1 L}
1 1
semantic retrieval : models that can extract answers from :
model from the y documents in response to a query. These |
H . ' models do not synthesize answers from !
ugging Face ' :) '

1 scratch like generative LLMs do — they only

model hub, plus ') '
QA del 1 mark the passage in the document that
a mode \ contains the answer. Like their LLM |
OdOpt'ed to the' : counterparts, these smaller Transformers are :
technical domain. often combined with a retrieval module. E 1
1 1

......................... -

Use case 3: Extracting information from business
reports

A federal institution assesses financial risk factors for
companies based on their business reports. They run each
report through a pipeline for information extraction, which
highlights the relevant sections using a model that’s been fine-
tuned to financial jargon. While low-confidence results still need
to be checked manually, the system allows their officers to
assess individual companies much faster.

Once you have decided on the structure of your pipeline design,
you can start thinking about what language models and
prompts to populate individual components with.

Designing the pipeline

22

CHOOSING THE RIGHT MODEL
AND PROMPT

It is very rare that those building and deploying modern, LLM-
based systems will have to train or fine-tune their own models
(although this may be needed in some very specific use cases).
Instead, working with LLMs is often all about:

- Choosing the right models for your use case

- Prompting the LLM to complete the task of your application
- Evaluating the model

- Monitoring and updating the retrieval model

: Fine-tuning :
:A pre-trained model is characterized by its weights — the:
: parameters that have been set during training, and that determine :
, the model’s behavior during inference. When you fine-tune a ,
1 model, the weights are initialized to the pre-trained values, and you
: then adapt them further to your data by running additional training :
: steps. Fine-tuning is a well-established practice for smaller encoder :
1 models, as it can teach them how to perform specific tasks or }
: understand domain-specific language better. It is less common :
1 with LLMs — these models are much more powerful, and rather than
: fine-tuning them, we engage in “steering” techniques like :
: prompting to harness their power. For very specialized use cases, :
1 you may still want to fine-tune an LLM, however - and some |
: providers allow their users to do so via an API. -o0— :

In this chapter, we'll look at the first step of choosing the model.
Because of the huge — and steadily growing — selection of pre-
trained LLMs out there, it helps to be clear in advance about
what you require from the model.

Choosing the right model and prompt

23

These include considerations about your ideal LLM’s latency
(speed), quality of responses, cost, and privacy. Having clarity
about these factors will help you narrow down the space of
candidates when you go model-shopping.

1

1

1

1

1

Llama 2! - :
Wt :

1

I =

What do you need from your language model?

Of course, your project will dictate the main properties of your
language model, such as the language itself and the specific
task. LLMs work well out of the box for many of the world’s major
languages like English, Spanish, and Chinese. Similarly, many text
embedding models for document retrieval are able to process
documents in multiple languages.

Leaderboards like the Chatbot Arena or Hugging Face’s Open
LLM Leaderboard can help you get an idea of the quality of
different models’ output and help you preselect a few
candidates. For a comparison of different embedders, have a
look at the MTEB Leaderboard on Hugging Face. Because these
models’ results can vary widely between use cases, it’s best to
try out the models for yourself, and on your own data, by
plugging them into your pipeline.

Choosing the right model and prompt

24

In terms of cost, consider that even open source models will
likely have to run on external servers — and that cost often adds
up to more than the fees charged by third-party model
providers.

This brings us to the issue of security and legal concerns. Many
of the most high-performing LLMs today are proprietary models
served through third-party APIs such as OpenAl or Cohere.
Unlike open source models, these LLMs cannot be hosted on
your own infrastructure, which makes them unsuitable for teams
with stringent security requirements and legal constraints.

Teams with security constraints that don’t allow them to make
use of proprietary models often choose to host models
themselves. This comes at an effort cost: deployment,
maintaining servers, and ensuring availability. Alternatively,
services like SageMaker and Azure allow you to use their
hardware to deploy and host your own model.

Note that there’s
no reason to limit
yourself to one

model. Thanks to

: Hosted inference
: LLMs are too large to run locally on your
1 machine - you would need several GPUs for
' that. Closed-source models are served via
the option of fast : third-party APls, requiring you to send your
prototyping offered | prompt to the provider and receive the
by pipelines, you'll } model's output in return. Open source
be able to try '
and test many '
different models !
before settling !
on the model touse 1
in production. E
1

models, on the other hand, can be
deployed on a hosted inference service like
SageMaker or Azure. This transfers the
heavy lifting of running an LLM to an
external service, while leaving the control
over which models are running and how
they are accessed in your hands.

Choosing the right model and prompt

25

Model prompting

The triumph of LLMs has given rise to a new discipline in Al:
prompt engineering. Skillful prompting has become an
increasingly important design step in LLM applications because
it has a stark effect on their performance. In some cases, the
choice of prompt can even influence which LLM you end up
using in your application. But what exactly is a prompt?

Simply put, a prompt is the instruction we send to an LLM, in
natural language. Most — though not all = LLMs are designed to
follow instructions.

Besides containing a placeholder for the actual user query,
prompts allow us to outline the desired shape, tone, length, etc.
of the LLM’s response. They are so flexible that, depending on
the model’s abilities, you can use prompting to morph your LLM
pipeline into anything from a summarization system to a
question answering one.

Model prompting is one of the key steps in a retrieval
augmented generation (RAG) pipeline. Let’s have a look at two
example prompts for RAG systems. The first one is suitable for a
RAG pipeline that summarizes the context provided by the
retrieved documents:

"Create a summary of the following context.
Context: {documents}
Summary:"

The following prompt, on the other hand, instructs the LLM to
answer a query based on the provided context:

"Answer the question based on the provided context.
Context: {documents}

Question: {query}

Answer:"

Choosing the right model and prompt

26

As these examples illustrate, the prompt creation component
can act as a template with placeholders that get filled in by
other components in the pipeline. For example, {documents}
could be provided by a retriever component, while {query}
could be user input.

Each LLM has a context window, which is the number of tokens it
can attend to. The length of the context window depends on the
model and determines how many documents the LLM can
process at once. Some models are designed to accept very long
prompts, while others can only parse a more limited context. The
shorter the context window, the more important it is for retrieval
to select the most relevant documents.

Choosing the right model and prompt

27

PROTOTYPING

After designing your pipeline architecture and choosing your
model candidates, it's time to start prototyping. Fast
prototyping, where vyou iterate through different system
configurations by evaluating, testing, and adapting pipelines
quickly, is an essential element of the LLM-powered
implementation cycle.

A key advantage of using pipelines over setting up a system
from scratch is that they allow for fast prototyping. All you need
to do is instantiate the pipeline, add the models to it, and
connect the pipeline to your underlying database. With the right
LLM framework, the entire process won’t require more than a
few lines of code.

Working with documents

Text documents can come in many shapes and formats, and their
initial form may not fit the language model you’re going to work
with. For instance, how many tokens a prompt can pass on from
the retrieval component to the generative component depends
largely on the LLM you use, while language models for
extractive QA benefit always from shorter documents.

Furthermore, if your pipeline uses a component for document
search with text embeddings — as some retrieval methods do —
you need to create those embeddings first, before you can add
them to the database — a task known as indexing. The choice of
embedding model will also have an impact on the length your
documents need to be.

Prototyping

IS
------------------------------ Q-
Keyword vs. embedding retrieval RN

Document retrieval describes the task of selecting documents from
a large corpus in response to a query. You can use a keyword-
based method like BM25, which is language- and domain-agnostic
and runs very fast. However, if you want your retrieval module to be
aware of semantics, you’ll need to use an embedding model that
leverages Transformers. Such a dense model may perform poorly in
an out-of-domain setting, however.

Once more, you can use a pipeline to streamline the task of
preprocessing and indexing your documents.
e e escssEcsssEcessceEeE e

. Indexing pipeline

@9| Cleaning |%| Splitting |% Vectorization ——)
L}

e e m e mm=d

The indexing pipeline pre-processes your documents — by
cleaning and splitting them. It then transforms them into vectors
and indexes them.

Setting up the query pipeline

Set up the query pipeline by instantiating it together with the
models that you want to use. If youre working with several
prototypes, make sure to keep them separate and identifiable.
Ideally, do this using a version control system such as Git;
alternatively, give them descriptive names and save their
parameters in separate files.

Prototyping

29

=== mEmEmEmEmEEEEEEEEEEEEEEE === ===y

Model hub

The pipeline is then connected to the indexed database. Now
you can start querying your system — and, even better, let other

people do the same.

Different pipeline
prototypes

s >

Save pipeline parameters
with version control

Prototyping

30

TESTING AND EVALUATION

To understand the quality of your pipelines — and to be able to
compare different systems — you’ll need to evaluate and test
them. For a quantitative analysis, a representative evaluation
data set is run through the model to compute a number of
performance metrics (see below).

LLM-powered systems aren’t as straightforward to evaluate as
other machine learning models, because it’s not always easy to
define when language is “correct” (see infobox “Evaluating
LLMs”). That’s why, to successfully evaluate an LLM system, it’s
necessary to include qualitative judgments in addition to the
quantitative measurements.

Evaluating an LLM pipeline

When you evaluate an LLM pipeline, you can check the
prediction quality either of the entire system or of individual
components. The metrics you use then depend on a component’s
task. For example, to evaluate a retrieval component, you'll be
using a metric like recall, which measures the percentage of
correct documents retrieved.

For the evaluation of extractive models, you'll be looking at
metrics like the F1 score, which measures the lexical overlap
between the expected answer and the system’s answer.
However, the shortcomings of such metrics are apparent when
we talk about generative, semantics-driven Al systems, whose
entire purpose is to abstract away from individual words and
focus on the meaning of a text.

Testing and evaluation

-

A Labrador = i P P EEEELTEETTEEE ;
is running - Thedog 1 F1: 0% match H

|

|

|

|

|

I | afterahare B‘ o chasesthe |-~
1 rabbit 1 SAS: 67% match
|

|

|

|

: Human evaluation: |
E “These two answers '
: mean the same :
1 thing! 95% match.” |

--=emememememememomom

1
—

Two people could come up with vastly different responses to the
same query, and both could be equally appropriate. To capture
that property, some frameworks have proposed Transformer-
based metrics like the semantic answer similarity (SAS), which
measure the semantic rather than the lexical congruence of two
texts. Some other approaches have included using natural
language inference (NLI) models that check whether a
statement is entailed within the knowledge base, allowing us to
detect hallucinations. However, as such methods are only slowly
gaining wider traction, complementing your quantitative
analysis with a qualitative one remains absolutely necessary.

Qualitative evaluation

Even if the data you use for your evaluation data set is relatively
recent, nothing beats evaluating your system using real user
feedback. Thanks to the easy prototyping offered by LLM
pipelines, you’ll be able to demonstrate one or more system
prototypes to your audience early in the implementation cycle.

Share a simple browser-based prototype with a representative
group of users and have them submit queries as they would to
your final system. You can then ask them to evaluate the
answers they received from the system.

Testing and evaluation

32

Aggregated, these judgments are valuable numbers that will
help you decide which system to use in production, or which
aspects of your system need improvement.

Testing your system with real users has a second benefit: it will
alert you to discrepancies between your own preconceptions of
how your system will be used and how it's actually used in the
real world. Perhaps the demographic of your users has shifted,
and they talk about different topics than they did when you
collected your data. Perhaps they use words or abbreviations
that your system has never seen before. You'll only know by
investigating the data produced by your actual users.

You might also discover that the data you provide to your system
for retrieval is outdated or lacking in some other ways. In that
case, you could look into techniques for data collection and
curation. A simple but effective technique for improving retrieval
is to combine a keyword (sparse) retriever with an embedding
(dense) one. Such a hybrid retrieval setup benefits from adding a
ranker to the pipeline.

Rankers

1 L}
L} L}
1 1
: In most applications that use retrieval, the order of the retrieved :
1 documents is crucial — for instance, when you only pass on a subset
1 L}
1 of those documents to the next component, or when you need to
: combine the results from two retrievers (hybrid retrieval). Rankers :
1 use small, fast Transformer models that rank the retrieved |
: documents according to different criteria, like their relevance to the :
1 1
1 1

query or their diversity. OAYW

Testing and evaluation

33

DEPLOYMENT AND MONITORING

Once you’ve updated your datasets for retrieval, refined your
prompts, and evaluated your prototypes in terms of both user
feedback and evaluation metrics, it’s finally time to deploy the
system to production and release it to the world.

But, a bit like a garden that requires constant tending to, your ML
models in production still need regular check-ins and care from
their developer. So, rather than handing off your system to a
back-end engineer and being done with it, MLOps requires that
you as the model maintainer stay in the loop. Not only do you
need to take care to deliver a deployable and maintainable
system, but because of the unique perishable nature of ML
models, you also need to ensure that the downstream systems
that use them remain up to date.

So, in this chapter, let’s look at the steps involved in bringing your
system to production — and maintaining it. Then we'll talk about
how managed tools can assist you in streamlining a process that
may, at times, seem quite overwhelming.

From prototypes to a system in production

While the underlying models are the same, the difference
between running a prototype pipeline locally and deploying
that same pipeline to production is like day and night. That’s
because the requirements are quite different. A pipeline in
production needs to run reliably at all times, be able to accept
and process user queries quickly, and communicate with many
different clients.

Deployment and monitoring

34

In the bigger picture, the LLM-powered pipeline is just one
component of the larger business application it is embedded in.
Such an application is based on a complex infrastructure,
comprising servers, process management tools, and the
database.

Such a setup has to handle many requirements. For example, it
needs to:

- Handle the scaling up and down of compute resources
depending on system load.

- Provide copies of your data in the case of hardware outages
or network problems.

- Duplicate pipelines in the case of many parallel requests.

- Handle user authentication.

- Limit the rate of queries to prevent abuse of the system.

- Protect sensitive user data.

Pipelines bring the principles of modularity and composability to
LLMs, in the same way composable stacks did for other web
apps a few years ago. Building your system out of modular
components in a pipeline offers easily examined, granular
control for use in installation, debugging, and analysis.

By packaging your composed system in a pipeline, you have
created a portable piece of software that handles everything
from raw data to inference, allowing a smooth transition to a
production environment.

Integrate your LLM-powered system into your final
product

In order for your pipeline to seamlessly integrate into the
business application, it has to fit the overall API-driven
application architecture.

Deployment and monitoring

35

In the last decade using an HTTP RESTful APl has become an
industry standard for inter- and intra-application integration.
This approach is widely used to instrument the common entry
points to the application, where on a technical level the client
requests and the application responses flow back and forth in a
predictable manner.

If your pipeline isn't wrapped in an API layer, it's going to be
extremely hard for your peers in back-end and front-end app
development to integrate it into the actual business application.
In many cases, the lack of a standardized, properly implemented
APl layer becomes a huge obstacle to actually using a pipeline
in production.

Monitor your LLM application

A central goal of MLOps is to account for the decay likely to
occur in machine learning models. “Model decay” describes the
phenomenon where ML models in production become outdated
— and therefore less useful — over time. That’s why it’s so crucial
to monitor your deployed system, and update it once it shows
signs of decay.

As outlined in chapter 2, this part of the production process for
LLMs resembles a cycle: on a high level, you go back to
evaluating and testing your models, and, optionally, to refining
your pipeline. This could be done by, for example, adapting the
prompt, swapping the LLM for a better one, or improving your
retrieval setup. You then have to redeploy the updated pipeline
to production.

Deployment and monitoring

36

PR R R R R R el |

Continuous monitoring

Experiment, evaluate, test
i ~ Deploy to production

H H
and integrate

v !
Update pipeline

1
g |
While some steps of the monitoring process — such as collecting
user feedback and refining the prompt — involve manual work,
others can and should be automated. To be able to monitor your
system, it’s useful to devise metrics that can measure relevant
aspects of your system’s performance and quality. Those
measurements can be calculated periodically, and their results
can be integrated into some visualization, like a dashboard. In
addition, you might want to define thresholds which, should your
system reach them, will alert you to any critical states.

=== m e Em e EmEmmEEEEEEEEEEEE === ===y

Load on servers Negative user feedback

1
1 1
1 1
1 1
1 critical threshold 1
! @ critical threshold !
1 1
1 _/—/ 1
1 1

1

-

How about those aspects of the MLOps cycle that can't be fully
automated? For example, both the selection of representative
users and the evaluation of their feedback require some manual
work, as does the collection of new training data and the
retraining of models.

Deployment and monitoring

37

Both tasks — feedback and retraining — are made considerably
easier by managed LLM platforms, which are designed to assist
Al teams in organizing their workflow, demoing prototypes,
visualizing workloads, and performing version control.

In addition to providing you with the tools to manage, monitor,
and maintain your LLM system in production, managed tools
also take a lot of work off the back-end engineer’s shoulders —
for example, by handling the deployment, automated scaling,
and authentication of your system in production. And, of course,
most managed solutions for serving machine learning systems in
production include tools for monitoring those systems in a fully
automated manner.

Building, implementing, and maintaining an application that’s
powered by the latest LLMs might not be the easiest task for a
developer — but thanks to model sharing, LLM frameworks, and
hosted solutions with powerful back ends and intuitive user
interfaces, it can turn into a highly rewarding job.

It's certainly worth it: businesses across industries are benefiting
from the incredible abilities of large language models and their
sheer endless customizability. Paired with safeguarding and
quality-improving techniques like prompting and retrieval
augmentation, these systems are poised to change the
landscape of data management as we know it. Providing a
sleek, natural-language interface powered by generative Al to
unlock the information hidden in your data storage isn’'t only a
surefire way of building a satisfied user base — it’s a must if you
want to stay competitive.

Deployment and monitoring

38

Get started

At deepset, we think a lot about how to make the most exciting
technological advances of our time available to a broader
range of people. We're certain: it’s time to bring the impressive
results of the last couple of years in natural language processing
— which culminated in the development of LLMs — to every
application and every service that uses natural language.

Haystack, our open source LLM framework, lets you build your
own natural language interfaces for your data.

Check out our LLM platform deepset Cloud for a fully managed
solution that assists Al teams in building their own applications
powered by large language models. deepset Cloud offers all the
tools needed for fast prototyping, deployment, and collecting
user feedback — all while implementing best practices from the
MLOps cycle.

Finally, we'd be happy to welcome you in our online community
on Discord, where you can chat to other developers that are
building LLM into their products — or directly to our team.

Get started

39

LEARN MORE

deepset website

56
o]

Hallucination
detection

Hugging Face
model hub

deepset Cloud
documentation

nEEAD

Retrieval
augmented
generation

Beginner’s guide
to prompting

Haystack
website

Haystack on
Discord

Learn more

