LLM Adoption
In the

“Enterprise 5 22

A Guide to Building Mecmlngful
Products with Generative Al

VAN

Isabelle Nguyen

/\
%g(

REPORT

L] deepset

Fast-track
Al innovation

with deepset Cloud

Bypass the intensive DIY development process and
speed time-to-launch and time-to-value.

Test 100+
architectures

Index IOM+
documents

In less than one month, iterate Move quickly and accurately
to production by leveraging

your complete dataset

rapidly through pipelines with
efficient prototyping

FULL DIY VS. BUILDING YOUR SOLUTION ON DEEPSET CLOUD

()} S >
2 © 2 e
PEOPLE COMPLETE PILOT PRODUCTION INFRASTRUCTURE
Homegrown HAS TO BE
tech stack + 8 6 12 + BUILT AND
s FTEs 'I\’IMC:”;‘.::ISE;\:CT) MONTHS ORCHESTRATED
deepset Cloud .I SCALABLE
toolchain + 2 WEEKS & RELIABLE
infrastructure MONTH TO INFRASTRUCTURE
FTEs IMPLEMENT

Launch quality
applications

High performance and
high accuracy

@

EFFICIENCY

DIVERSE TEAMS
MUST SELF-ORGANIZE
AND TACKLE STEEP
LEARNING CURVE

END TO END
LIFECYCLE
SUPPORT

and expert guidance
from the deepset team

Discover more at deepset.ai/deepset-cloud

https://www.deepset.ai/deepset-cloud?utm_campaign=2024-oreilly-report&utm_source=oreilly-report&utm_medium=banner

LLM Adoption in

the Enterprise
A Guide to Building Meaningful
Products with Generative Al

Isabelle Nguyen

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KOAR{=I|NAE

LLM Adoption in the Enterprise
by Isabelle Nguyen

Copyright © 2024 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield Proofreader: Helena Stirling
Development Editor: Gary O’Brien Interior Designer: David Futato
Production Editor: Beth Kelly Cover Designer: Karen Montgomery
Copyeditor: nSight, Inc. lllustrator: Kate Dullea

April 2024: First Edition

Revision History for the First Edition
2024-03-27: First Release

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. LLM Adoption in
the Enterprise, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’'Reilly and deepset. See our statement
of editorial independence.

978-1-098-15162-1
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Introduction

1.

Table of Contents

Alinthe Enterprise........oovvieiiiiiiiiiiiieenneennnnens

Al in Context

So What Exactly Is an LLM?

A Snapshot of Language Models in the Enterprise
Four Sample LLM Applications

Pivoting Attention from Technology to Product

Buildingan AlProduct............covviiiiiiiiiiiiiinnnen,

What Is an AI Product?
Considerations for Building with AI
From Product Ideation Toward Planning

. The Al Product Development Lifecycle.....................t

An Exemplary Case Study: Building a News Digest App
Developing a Product Hypothesis

Prototyping, Experimentation, and Evaluation
Refinement

The AlTeam'sToolKit.covvinrininiiiiiinirenennnn,

Model Selection

Prompt Engineering

The Role of Data

Advanced Composable LLM Setups
Putting the Pieces Together

15
16
16
18
19

21
22
23
24
27
30

5. FromPilottoProduct..............cooooiiiiiiiiii 31
Scalable Pilots 31
Getting Ready for Production 32
The Challenge of Monitoring LLMs 32
Keep an Eye on AI Regulation 33

Building Meaningful Al Products.ccoovvvvniininnnnnne, 35

vi | Table of Contents

Introduction

Tailored copy written by a chatbot, automated code reviews, and a
fully Al-driven yet empathetic and helpful customer support. The
potential of large language models (LLMs) to increase productiv-
ity and drive return on investment (ROI) seems too good to be
true. But this disruptive technology also presents a challenge that
goes beyond cost and technical know-how. To bring an LLM-based
application to production, product leaders need a pragmatic under-
standing of the technology, the business outcomes it can drive, and
the skills required to bring their product idea to life. They must
be able to lead diverse teams through the adoption process and
respond to new challenges as they arise. By learning to overcome
their initial awe of a new and groundbreaking technology, product
leads can begin to embrace the potential of LLMs to address their
users’ pain points. In this way, LLMs become a powerful addition
to the product team’s toolbox that, when used properly, can solve a
variety of text-based problems.

The need for such a mindset shift is underscored by a recent
Gartner® report,’ which advises decision makers to learn “how
generative Al can drive strategic value” Otherwise, teams risk build-
ing ultimately useless generative AI products whose only purpose
is to “demonstrate that it is possible to build something with genera-
tive Al, leading to only incremental improvements and ignoring the
transformative potential of this technology. This is a mistake.” This
report is here so that you don’t make the same mistake.

1 Leinar Ramos, et al., “How to Pilot Generative AI”, Gartner, (July 2023) (GARTNER is
a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S.
and internationally and is used herein with permission. All rights reserved.)

vii

https://oreil.ly/CZi2h

In this report, I want to address the barriers that prevent thought
leaders from adopting AI. Over the next five chapters, a new picture
of Al in products will emerge that will help you understand how this
technology can pave the way for previously unthinkable innovation.
After dispelling some common misconceptions about the technol-
ogy itself in accessible language, I'll introduce the most common
applications of Al in the enterprise in Chapter 1. Chapter 2 takes
a closer look at Al in a business context, specifically the product
mindset that leaders need to adopt if they want to successfully
deploy an Al-powered product in production. I will then go through
the entire development cycle of an Al product and illustrate it with
a use case that takes us through the different phases in Chapter 3.
After that, the report gets a bit more technical, with an introduction
to the AI team’s toolkit in Chapter 4, and finally an overview of how
to transition from piloting to production (Chapter 5).

Hyping a new technology is easy if you dont have to show proof
that it actually works in a business environment. As a reader, it can
be difficult to cut through the noise and find concrete examples
that illustrate the use of Al in the wild. To provide a more practical
experience for my own readers, I have made sure to include many
different examples of what actual LLM products can realistically
look like.

vii | Introduction

CHAPTER1
Al in the Enterprise

This chapter introduces the intuition behind LLMs, as well as the
key concepts from the world of Al and machine learning that are
necessary to understand LLMs. Equipped with these concepts, we'll
move on to see the most common uses of LLMs in the enterprise
today, before taking a deeper dive into four exemplary projects that
encourage a pragmatic understanding of how these language models
can be used in industry applications.

Al in Context

As a field that is rapidly evolving and constantly drawing new peo-
ple into the conversation, many terms in Al (such as “artificial
intelligence” itself) aren’t very well defined. Let’s clarify our under-
standing of them for the purposes of this report.

Al Today Is Mostly Machine Learning

Our everyday use of the word “AI” describes machines that mimic
intelligent human behavior. The means by which they do this are
not limited to any one technique, and of course intelligence itself is
a fuzzy concept. Machine learning (ML), on the other hand, is the
study of algorithms that use data to construct models (i.e., predictive
representations) of a given domain.

Not all AI is machine learning. But the vast majority of AI technolo-
gies making waves today—such as generative Al for images or text—
rely on machine learning as their driving force.

An Algorithm Trains a Model with Data

The concepts of algorithms, models, and data are critical in ML.
However, their relationship—as well as the nature of an ML model
itself—is often poorly understood. It is important to note that a
model is not an algorithm, but rather the result of data being pro-
cessed by an algorithm. An algorithm can be thought of as a plan or
set of rules in a programming language that describes this process,
which is also known as “training a model on a dataset”

The algorithm itself only defines the structure of the model, not
its content. That's why running an ML algorithm on two different
datasets—say, one in English and one in Spanish—will produce two
different models.

A Trained Model Is Defined by Its Parameters

A machine learning model’s size is determined by its parameters:
adjustable numeric values that are optimized during training to
accurately recognize and predict patterns in data. The values of a
trained model’s parameters characterize it and can be shared and
reused, especially for inference, where the model applies its learning
to new, previously unseen data points.

Large language models can have millions, billions, or even more
trainable parameters.

There Are Many Different Kinds of Language Models

Language models have learned a representation of the language on
which they’ve been trained. This representation can then be used
to make predictions, such as which word will follow a sequence of
words.

But not all language models are generative. In particular, smaller,
pre-ChatGPT models that are still widely used in many differ-
ent applications specialize in extracting information from text
or embedding text in numerical format for fast semantic search.
These more specialized models, such as RoBERTa and Sentence-
Transformers, continue to exist alongside their generative LLM
cousins, whose emergent properties have made them world famous.

2 | Chapter 1:Alin the Enterprise

So What Exactly Is an LLM?

Now that weve gone over these complex concepts related to
machine learning, language modeling, and AI, we have the under-
standing and the terminology to talk about what LLMs are (and
aren’t).

In the most common understanding of the term, LLMs are language
models with billions of parameters that excel at generating text
in natural language. To ensure that they learn to capture an accurate
representation of the world, LLMs are trained on vast collections
of textual data. In addition, it is becoming increasingly common
to find multimodal models that can process and generate both text
and images—for example, they can be used to create captions for
diagrams. This is a natural consequence of the fact that the tech-
nology behind LLMs is also very good at processing visual input.
The technology underlying LLMs also excels at processing visual
input, so they can be successfully applied to text and images simulta-
neously, as seen in models like GPT-4 and Gemini. By looking at
terabytes of data from the web and other sources, LLMs use their
many parameters to learn linguistic patterns, as well as factual infor-
mation and correlative relationships across a wide range of topics.
They can then use these representations to perform complex tasks,
like writing valid code in any programming language, generating
image captions, and composing prose in the style of a particular
author from scratch. These abilities—known as “emergent proper-
ties,” because they were not literally present in the training data—
arise from the LLM’s ability to apply the patterns it has learned to
new domains. For many people, they are the most impressive feature
of these language models.

An important concept in the context of LLMs is that of prompts.
Prompts are the text that we, as users of an LLM, feed to the model,
instructing it to perform certain tasks. As such, prompts are the de
facto user interface of an LLM. Effective prompting requires some
practice and the use of tested and proven techniques. The length of
the prompt is model-specific, but most prompts have enough space
to provide context for the model to base its responses on—a critical
concept in the most successful enterprise applications of LLMs, as
we will soon see.

SoWhat Exactly Isan LLM? | 3

What makes LLMs so attractive to businesses is their ability to rea-
son and write in humanlike quality and at a scale well beyond that.
Text-related tasks such as programming, report analysis, informa-
tion extraction, and copywriting can now be performed by machines
within seconds, opening up a wide range of applications previously
unimaginable. Maybe that’s why it can be hard to ideate use cases:
we have to change our entire way of thinking about what’s possible.
To help us broaden our horizons and start thinking about LLM-
powered applications that create value in the real world, let’s look at
practical examples of the most common uses.

A Snapshot of Language Models in
the Enterprise

In practice, the boundaries between generative LLMs and their
smaller counterparts are not always clear. All language models orig-
inate from the discipline of natural language processing (NLP),
which has long been concerned with how to make natural, human
language processable by machines. After early successes such as
machine translation, spam detection, and speech generation, NLP
finally entered the mainstream with generative AI. But now were
seeing a trend among industry thought leaders and analysts to
recognize the usefulness of earlier language models by including
them under the umbrella of LLM. These smaller, nongenerative
models have had more time to gain traction and are already firmly
and quietly embedded in products across industries—increasingly
in combination with generative LLMs. In addition, a new class of
small language models (SLMs) has recently emerged that aims to
capture the generative and reasoning capabilities of LLMs, albeit
with a much smaller number of parameters. Now that we have
a rough overview of the language modeling landscape, heres a
list of the four most important use cases for language models in
production:

Generative Al and chat
Given the popularity of ChatGPT, it is no surprise that gener-
ative Al is the most popular use case for enterprises. In the
context of LLMs, generative Al describes the generation of text
in response to a prompt. For example, it can provide users of a
styling service with customized outfit descriptions on the fly.

4 | Chapter1:Alin the Enterprise

Information extraction

Information extraction uses language models to isolate key
pieces of information from text documents for use in down-
stream tasks, such as populating a table or database. Consider
a construction company that works with tens of thousands of
contractors, all of whom have different insurance policies. To
ensure that it is not liable for its contractors’ mistakes, the
company wants to understand which risks are covered by which
policies. To do this, it automatically extracts this information
from the lengthy (potentially 500-page) contracts and stores it
as metadata.

Recommendation and search systems
Semantic recommendation systems take advantage of the ability
of language models to mathematically represent and compare
the meaning of text, providing an extremely fast way to find
similar documents, even across large databases. An example
of this technique in action is recommending properties with
similar descriptions after each listing on a real estate platform.

Text classification
Classification is a “classic” NLP application that can help sort
text into predefined categories for faster processing. For exam-
ple, you may want to classify incoming user queries as positive
or negative before passing them to a downstream application or
human agent.

Four Sample LLM Applications

The products best suited for LLM adoption have one aspect in
common: textual data is a major factor. Here I look at four exam-
ples, inspired by real-world LLM applications, that serve to further
illustrate how companies can move from problem to LLM solution.
You'll see that they span different industries, pain points, flavors of
LLM, and user groups.

Sophisticated Recommendations for
Legal Professionals
For lawyers working on a case, it’s critical to review all relevant legal

cases and documents. Consider a company that has a large database
of legal texts—including past cases and decisions—available to its

Four Sample LLM Applications | 5

subscribers, most of whom are legal professionals. The company
wants to enhance its service by adding a feature that displays a list
of related cases and documents on its platform. This tool is designed
to help lawyers find and review relevant cases more quickly and
effectively, thereby allowing them to take on more cases or improve
the quality of their work by catching details they might otherwise
miss. However, because new cases are constantly being added to the
database, this list of relevant cases cannot be static, but must be
defined dynamically.

The solution is a recommendation system based on semantic sim-
ilarity. Semantic similarity uses small or large language models
to determine the closeness of meaning between two documents
based on an abstract representation of their content, rather than the
vocabulary they use. This helps to identify two semantically similar
documents even if they use very different words. In addition to the
search functionality and its integration into a user-facing frontend,
the team tasked with building the application also needs to archi-
tect and schedule the preprocessing of incoming documents. This
process, known as indexing, is accomplished by the same language
model.

Conversational Al for Technical Documentation

For developers, clear and accessible software documentation is crit-
ical—it is the guide that helps them use software or libraries effec-
tively. But navigating documentation can be daunting. Consider
the massive scale of cloud service providers like Amazon Web
Services (AWS) or Azure: their documentation can run to thou-
sands of pages, covering a wide range of services, features, and
policies. Faced with such a sea of information, users quickly feel
overwhelmed and often turn to browsing the web for answers rather
than sifting through official documentation. To address this prob-
lem, a software company wants to revolutionize the way customers
interact with their documentation. They plan to introduce an intu-
itive search interface that allows users to ask questions about the
codebase in natural language and quickly find accurate answers.
This not only streamlines the process, but also ensures that develop-
ers are getting the most accurate and relevant information directly
from the source.

The natural language capabilities of an LLM are ideal for this use
case. However, the team doesn’t want the LLM to generate answers

6 | Chapter1:Alin the Enterprise

based on the knowledge it learned during training: the documenta-
tion was probably not part of that training data—and even if it
was, that information could become outdated with the next software
update. To compound the problem, LLMs are notoriously bad at
understanding the limits of their own knowledge. Thus, when asked
about things absent from their training data, they often answer
regardless—by inventing facts. This is known as “hallucinating,” and
it is a major problem in LLM adoption.

The remedy to outdated information in the LLM’s parameters and
ensuing inflation of hallucinations is a method known as retrieval-
augmented generation (RAG). In such a setup, the LLM is preceded
by a retrieval module, which extracts the candidate documents it
deems most suitable to answer the user query from your database.
Upon receiving a query, the RAG system first identifies suitable doc-
umentation pages. It then embeds those in the prompt to the LLM,
instructing it to base its answers on the fact-checked information
from the database. RAG as an LLM technique is extremely popular
because of its ability to create a factual knowledge base on the fly.

Automating the Collection of Information from
Earnings Reports

The advent of LLMs has enabled machines to process unstructured
data. The term “unstructured” refers to data types such as images,
audio, video, or text: formats that don't follow a strictly predefined
structure. Structured data, on the other hand, is data that comes in a
predictable format, such as tables and graphs, and can be processed
using less resource-intensive methods. For example, a large table can
be queried using SQL, which is faster, more accurate, and infinitely
cheaper than running an LLM for the same task.

Let’s say a company wants to identify information in its unstruc-
tured textual data that can be fed into such tables. For example,
they might want to extract specific numerical and other factual data
points from a collection of earnings reports.

The solution: using a smaller language model to mine text for
information, not by generating answers, but by highlighting it in
the underlying source document. Such models are called “extrac-
tive” language models. They’re not only lighter and cheaper than
LLM:s but also safer for highly sensitive areas such as finance. That’s

Four Sample LLM Applications | 7

because they are incapable of LLM-like hallucinations, and they are
necessarily more faithful to the underlying dataset.

Condensing Political Discourse for News Consumers

Democracy thrives on the active participation of its citizens. But
political debates in parliament are often long and difficult to access.
For this use case, let’s imagine a government application that wants
to make parliamentary debates more accessible to citizens by sum-
marizing the debates’ transcripts according to the user’s interest.

This use case is similar to the second in that were dealing with a
database of texts that is updated periodically. And indeed, to address
it, we would again use a retrieval module that extracts the relevant
transcripts upon receiving a user query. But instead of generating
answers, this system would use an LLM to summarize all the under-
lying texts. In this way, users could get timely overviews of political
debates tailored to their individual interests.

Pivoting Attention from Technology to
Product

New technologies are often the subject of hype at one end of the
spectrum and doom at the other. The same is true of large language
models, whose complexity makes them difficult to grasp even for
technically-minded people. But to build useful and innovative prod-
ucts with Al, you don’t really need to understand the mathematics
of LLMs or the details of their implementation. What you do need
is a strong sense of how they can be applied to solve real-world
problems. This chapter has introduced basic concepts in Al, with
a specific focus on LLMs and how they can be used. The practical
examples of AI-powered products in the wild have given us a sense
of how we need to start approaching LLMs to be successful in
building with them. In the next chapter, I'll examine the notion
of an Al product and what you need to consider before you start
building one.

8 | Chapter 1:Alin the Enterprise

CHAPTER 2
Building an Al Product

As the sample projects in the previous chapter have shown, gaining
a solid understanding of the technology is just the beginning of
building with LLMs. This is true for any technology, but because of
the complex and intimidating nature of these recently introduced
models, a closer look in the context of Al in particular is warranted.
So in this chapter, I want to explore the notion of an AI product
and how you need to start thinking about the technology to build
products that will drive your business forward.

What Is an Al Product?

An Al product is an application, a piece of software, or an actual
physical product that uses the capabilities of one or more AI tech-
nologies to process data and deliver a specific user experience, cou-
pled with a business outcome. When we talk about building with
LLMs and Al in general, Al itself is not the product. Rather, it
is the technology—often, the central technology—that powers the
product. For example, the ChatGPT browser application is powered
by an LLM. But it also consists of many other features, such as the
chat interface, user verification, and some sort of memory compo-
nent to store the previous conversation.

Product ownership is about understanding the process of develop-
ing a product from start to finish, and not losing sight of the end
goal. To do this, it’s useful to adopt a “product mindset”—that is, a
methodical approach to the project as a whole, as well as to its indi-
vidual parts. In that mindset, LLMs are an exceptionally powerful

tool for tackling language-based tasks. And this doesn’t only apply
to language: adopting a pragmatic view of generative Al technology
in general can unlock its untapped potential for a wide range of
products.

LLMs can help accelerate processes across the enterprise, with
potential user groups inside and outside your organization. While
there are obviously different considerations around requirements,
UI design, communication, scale, and security, there is no tech-
nological difference between internal and external products. In
fact, a 2022 Forrester survey found an almost even split between
Al-powered projects to automate processes within an organization
(39%) and those deployed in customer-facing products (33%).' So
when we talk about implementing Al in the enterprise, we should
always consider both.

Considerations for Building with Al

When developing an Al product, there are several aspects to con-
sider, including the business purpose, the technological implemen-
tation, and the skills required. Identifying the business purpose is a
critical and fundamental step in product management, irrespective
of whether it involves Al or not, as it helps you set the boundaries
for your project. It’s crucial to ask the right questions at this stage.
Specifically, what is the problem you want to solve? Who are the
end users who will benefit from the solution? Which subset of their
problems does the solution address—and which does it not? What
new capabilities does it create? In short, think in terms of use cases
rather than technologies.

Defining a Use Case

The term “use case” has slightly different meanings in technical and
business contexts. In a technical context, it refers to a description
of how a user interacts with a system, detailing success and failure
scenarios and highlighting notable edge cases. In a business context,
a use case serves a similar, albeit more comprehensive, purpose.
Often narrative in form, a business use case explains the rationale
behind a product and aligns it with the company’s overall goals.

1 Forrester Research, “Artificial Intelligence Market Insights, 2023”, May 2023. Available
to Forrester subscribers or for purchase.

10 | Chapter2:Building an Al Product

https://oreil.ly/qZiNq

It simplifies complex concepts, and is intended to be understood
by all stakeholders, not just those with technical expertise. A well-
constructed business use case provides decision makers with critical
information about market opportunities and the product roadmap.
It presents a clear and compelling vision of the product throughout
its lifecycle, helping to assess and mitigate risk.

In the product development lifecycle, a business use case always
begins with the identification of a problem to be solved. Conducting
market research and user interviews is critical to gain a deeper
understanding of the problem and identify the ideal solution, ensur-
ing that the product we market solves a significant, real problem.
The challenge that this step poses should not be underestimated:
“Difficulty finding appropriate use cases is the biggest bar to adop-
tion” in enterprises.” At the same time, it's the key to making sure
that products become a success. A use case is therefore more than
just a description of a user-system interaction; it’s a comprehensive
tool that guides the entire product development process, from ide-
ation to launch, ensuring that the product is not only technically
feasible, but also aligned with business goals and user needs.

Understanding the Technology

Your use case drives the technology you build your product with,
not the other way around. The biggest piece of advice here is not to
be intimidated by AI and the noise surrounding it. The internet as
we know it today rewards the loudest voices with the biggest claims,
and we've seen a lot of unfounded predictions before an Al product
has even shipped. Trust your instincts—if people are promising
products that seem to be powered by magic rather than the LLM
techniques we know, they’re probably more fantasy than reality. If
you're unsure about what this technology can and cannot do, reread
the “Al in Context” section in Chapter 1 of this report and research
any concept you don’t fully understand. Find trusted experts inside
and outside your organization to talk to. Although engineers who
are good at explaining technology to laypeople are a rarity, you can
take advantage of the many blog posts out there whose job it is to
do just that. Try to find case studies of actual AI products that have
been deployed in production. Reading and hearing about what other

2 Mike Loukides, “Generative Al in the Enterprise,” O’Reilly (November 2023).

Considerations for Building with Al | 11

https://oreil.ly/uix5p

people are building (and the problems theyre running into) can give
you a good sense of what’s actually possible with AI. Whats more,
understanding what LLMs are really capable of will help you spot
empty promises from Al vendors—and help you know when a new
development is really worth getting excited about.

Beyond the technology itself and its application to different busi-
ness use cases, the most important considerations when it comes
to LLMs may be related to cost and privacy. Sometimes there is a
trade-off between the two. Therefore, your requirements for one of
these factors will often influence how much leverage you can apply
to the other. For many organizations, the first instinct is often to
“just run an open source model locally for maximum security,” not
realizing that such a solution would be prohibitively expensive to
build and maintain. But even deploying a freely available LLM on a
cloud platform like AWS or Azure can be more expensive than using
a proprietary LLM via the vendor’s API, thanks to the latter’s on-
demand business model. When exploring such proprietary options,
it’s useful to understand the privacy restrictions and requirements
associated with different jurisdictions: the same model running on
servers in different locations may process and store your data differ-
ently. Understanding the cost-privacy trade-off and how it relates to
your use case is a useful exercise that takes some practice.

Assembling the Right Team

Building an AI product requires a variety of skills, from data
science to software development to user experience (UX) design.
Cross-functional teams are important for the success of an AI prod-
uct development project. Because of the inherently interdisciplinary
nature of Al and its applications, its technical complexity and cost,
and its potential business impact, you need people on your team
who can give the project the many points of view it deserves.
Here, I want to focus on three roles that deserve special attention
in the context of building and delivering a product: Al engineers,
because the function of this emerging field is sometimes poorly
understood; subject matter experts, because their unique insights are
often neglected; and business representatives, because without their
enthusiastic support, your product won't get the funding it needs to
get off the ground.

12 | Chapter2:Building an Al Product

Al engineers

Data scientists and ML engineers have a very specific skill set that
revolves around data and models. Traditionally, they spend a lot
of time curating datasets and training, evaluating, and improving
machine learning models. However, these skills are less relevant
when it comes to integrating LLM technology into a product. That’s
why a new role has emerged: the Al engineer. Al engineers are
pragmatic builders with a product mindset. Rather than focusing
on curating data to build models that will later become products,
they think about how AI can enrich products and what data, if
any, they need to do so. Al engineers understand the LLM space
and aren’t intimidated by it. Among their many in-demand skills—
which well explore in more detail in Chapter 4—is expertise in
prompt engineering. The current moment in LLM development
is encouraging pragmatic-minded AI enthusiasts from diverse back-
grounds to reinvent themselves as Al engineers, united by their
passion for turning AI technologies “into real products used by
millions, virtually overnight.™

Subject matter experts

Subject matter experts (SMEs) are typically much less technical than
the rest of the team. Their value comes from their industry-specific
knowledge and deep understanding of the use case. In the context
of our semantic recommendation system for lawyers, these would be
legal professionals, whereas a healthcare application would require
the expertise of doctors, nurses, and other medical personnel. As
Chip Huyen writes, “SMEs (doctors, lawyers, bankers, farmers, styl-
ists, etc.) are often overlooked in the design of ML systems, but
many ML systems wouldn't work without subject matter expertise.
They’re not only users but also developers of ML systems* The
same is true for AI products, where SMEs play a critical role in
shaping the use case, curating and annotating datasets, and testing
the product through its various iterations.

3 Shawn Wang, “The Rise of the AI Engineer”, Latent Space (June 30, 2023).
4 Chip Huyen, Designing Machine Learning Systems, O’Reilly (2022).

Considerations for Building with Al | 13

https://oreil.ly/bot_i
https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/

Business representatives

Engaging the business early in the development process is essen-
tial to ensuring that the product aligns with the company’s strate-
gic goals. What’s more, the active support of C-suite executives
and business representatives secures the financial and organiza-
tional backing of the project. Without this corporate commitment,
even the most visionary project risks stalling because it lacks the
resources to get off the ground and scale. By involving the business
from the start, you avoid potential disconnects between the tech-
nological capabilities of Al and the practical needs or constraints
of the business. You'll ensure that every step—from ideation to
development to deployment—is taken with a clear understanding
of the business context, ensuring that the end product is not just
technologically impressive but also a strategic asset.

Cross-functional teams are emblematic of a holistic approach to
product development, encouraging the collaboration and innovative
problem-solving that’s critical to overcoming the challenges inherent
in AI projects. The diverse insights and expertise within these teams
ensure that the AI solution is not developed in a vacuum, but is a
product of collective intelligence, closely tied to real-world applica-
tions and business goals.

From Product Ideation Toward Planning

Once your team has identified one or more viable use cases for
incorporating LLMs into the company’s products, it’s time to start
planning the adoption process. The dominant paradigm in software
development today is an agile workflow consisting of rapid, iterative
cycles. Building with Al is no different. In fact, I'd argue that it's even
more important with a technology as unexplored and expensive as
Al, because frequent reality checks with your team and potential
users will ensure that your organization’s resources are well spent
and that you're building a product with real value. In the next chap-
ter, I will discuss the development cycle for building AI products,
using realistic examples to guide us through the process.

14 | Chapter2:Building an Al Product

CHAPTER 3

The Al Product Development
Lifecycle

Software products benefit from short development cycles coupled
with frequent feedback. The same is true for building with AI Rapid
prototyping, user experimentation, the data and security constraints
you may face, and the volatile nature of LLMs in particular make
experimentation and reorientation of your product a feature rather
than a bug of the AI product development cycle, illustrated in Fig-
ure 3-1.

Start cycle

Define use case

Restart cycle

Evaluate results/ Al product dentify technical
feedback deve|0pment cyde solution

Experiment + ’I ‘ f
collect feedback Build prototype

Figure 3-1. A sketch of the development cycle for AI products; the cycle
can be repeated hundreds of times before the Al team arrives at a
viable product

15

To ensure that your project stays on track, this cycle consists of
several iterations of defining the use case, building a solution, exper-
imenting with it, and evaluating the results, after which the cycle
begins again. To help us get comfortable with this way of working,
in this chapter I want to take you on a guided tour of the steps in the
AT development lifecycle.

An Exemplary Case Study: Building a News
Digest App

To understand the AI product development lifecycle, let’s consider
the following hypothetical case. An online news platform is experi-
encing a dwindling number of subscribers. They know they’re up
against a powerful competitor: social media channels are increas-
ingly taking over the role of traditional news media by being the first
place people go to find out what’s happening in the world. This is
especially true among younger demographics, making it all the more
urgent for news media publishers to explore new technologies and
find new ways to engage with their audiences. Of course, everyone
in the company has seen ChatGPT in action, and many understand
that LLM technology can be a game changer for all industries, and
especially for publishing. They want to use LLMs but are unsure
about their capabilities and the skills required to operate them.
There’s also uncertainty about how a product with generative Al
capabilities can retain and attract users.

Developing a Product Hypothesis

To start building something, you must first identify a problem. In
the field of Al, executives are often in a rush to turn the technology
into a product without first considering the actual problems that
existing users face and that Al could potentially solve. But it’s the
product owner’s job to identify user pain points and, from there,
develop a hypothesis based on their needs and expectations. Ideas
for products can come from past usage patterns or problems that
customers have explicitly mentioned. Successful ideation requires
alignment with people across your organization and with your
users. Such a process takes time and is supported by a culture
of careful listening to users, the market, and internal discussions.
But insights can be gained through a variety of tools, such as user
research and feedback from social channels.

16 | Chapter3: The Al Product Development Lifecycle

Generating a hypothesis for your product can be like a litmus test
for how well you understand your users. And even if your initial
experiments prove you wrong, you and your organization have
everything to gain: insights about your users, as well as potential
ways to improve your product and company culture.

Defining the Problem

In our online news publisher example, a product team wants to
build a compelling new feature into the product using generative
Al They want to build an initial product pilot as soon as possible
to prove to management (and the organization as a whole) that
investing time, effort, and resources in AI and LLMs is the future
of publishing. The team doesn’t have a specific product idea yet, but
after seeing the impressive writing capabilities of OpenAIs models
firsthand, they imagine that the organization could use them to
generate new content on the fly, with an LLM customized to the
voice of the platform.

To solidify the use case, the product lead conducts a half-day work-
shop with a cross-functional team consisting of stakeholders from
business, engineering, data science, marketing, and the content team
itself. During the workshop, however, a different sentiment emerges:
users seem less interested in new content and more interested in
consuming existing content. In fact, team members who are in close
contact with the platform’s users report a pervasive sense that a
constant stream of events is making it harder to keep up with what’s
happening in the world.

Even though subscribers can personalize their news by listing the
topics that interest them, they’re often overwhelmed by the amount
of content and feel they have less and less time to read all the articles
that interest them. As the product lead discovers when she sends out
an initial questionnaire to some of the power users who have agreed
to be surveyed, they often end up reading articles that don't really
align with their interests, while feeling guilty about not keeping up
with more important news and wasting their subscription. Guilt
is the last feeling you want your readers to associate with your
product! The product team sees an opportunity for a new feature
powered by LLMs.

Developing a Product Hypothesis | 17

Identifying a Technical Solution

During the workshop, the cross-functional team agreed on a pre-
liminary use case: to build a feature into the platform that summa-
rizes the latest content based on the user’s interests, which they
select manually from a list of topics. To do this, the team wants to
build a RAG pipeline that retrieves articles from the database and
summarizes them. The articles are selected by topic and publication
date. In their prompt to the pipeline, the AI engineers instruct the
LLM to create a summary of the articles it receives.

Prototyping, Experimentation, and Evaluation

Prototyping allows teams to learn how users react to the product
idea in a live environment. AI teams should embrace prototyping
and experimentation because it allows them to test whether their
initial hypothesis holds up. After deploying your prototype, it’s a
good idea to share it as early as possible with a select audience
through an easy-to-use UI Test users should be able to stress test
the feature by running it with multiple queries or different config-
urations so that they can provide comprehensive feedback on the
functionality of the feature. This is an exciting milestone in any
product journey, as people begin to apply your prototype to their
real-world problems. Prototyping also gives you the opportunity to
discover additional pain points and unexpected usage patterns.

What you are testing and refining at this stage is not the LLM,
and not even just your particular application of an LLM to a use
case. Rather, it is the product as a whole. For example, you may
find that your application requires specific adjustments to the UL
Or you may find that users’ expectations of the documents in your
underlying database differ from what your product actually uses.

Shipping a Prototype

Going back to our news digest feature, the engineers on the team
built a prototype interface for the first test users. The feature is reso-
nating with these early testers. They like the idea of getting readers
up to speed quickly and giving them a starting point from which
to explore the news. After an initial round of positive feedback, the
team runs a round of A/B testing with the new feature. While testing
with 200 additional users directly in the app, they notice a curious

18 | Chapter3: The Al Product Development Lifecycle

pattern. After scrolling through the summaries, many users turn to
the app’s search function to verify that what they just read is true. It
seems that people do not easily trust the new feature.

Refinement

This is where our Al product development cycle begins anew. By
observing that some test users are not sure whether the new, LLM-
powered feature is fact-based or hallucinating, our team has identi-
fied a new pain point and must look for a new solution to address it.
However, it’s important to keep the big picture in mind during this
phase. Changing one aspect of the new feature might make another
aspect worse.

Back to the Drawing Board

The LLM experts on the team have worked hard to perfect the
RAG setup and prompt, and internal evaluations have shown that
the summaries generated by the application are factual and don’t
contain hallucinations. However, this is not obvious to users who
try to verify the claims themselves. To address the need for users to
research the events mentioned in the generated summaries, the team
comes up with a straightforward solution: they tweak their prompt
to include citations after each statement. The citations refer to the
retrieved articles, which are then listed at the end of the summary
so that users can go to them to learn more. In this way, readers can
fact-check the information referenced in the automated summaries
or simply read more about topics that interest them.

Another Round of Experiments, Refinement, and...
More Experiments

In the next round of experiments, test users praise the addition
of citations and references in the new summary feature. However,
these new experiments also show that the summaries are not as
good as before. This is probably due to the fact that LLM engineers
had to make extensive changes to the prompt used to generate the
citations. Prompting is a delicate art, and changes to a prompt in
one aspect often result in undesired behavior in another. That's why
it's important to keep a checklist of the growing number of things
your prompt must accomplish. It’s also a reminder that when we
build with LLMs, we need to remain vigilant about the model’s

Refinement | 19

behavior over time and monitor its performance in production.
Now that we've discussed the workflow of an Al project, in the next
chapter I'll discuss the tools and skills needed to build effectively
with LLMs.

20 | Chapter3:The Al Product Development Lifecycle

CHAPTER 4

The Al Team’s Toolkit

So far, we've focused on the soft skills your adoption process
will require, such as intuition, observation, and effective cross-
functional communication. But your AI adoption cannot be suc-
cessful without hard skills as well. Let’s say you've assembled the
kind of cross-functional team described in the previous chapter
that’s needed to get your product off the ground. Each role has its
own unique set of skills. When we focus on Al teams, especially Al
engineers, were considering a wide range of interests, talents, and
tools. In this chapter, I want to explore the key components of this
diverse skill set.

In addition to keeping up with the latest developments in language
modeling, Al engineers are often very good prompters, thanks
to their hands-on experience getting LLMs to do their bidding.
Because effective prompting is so important to getting the results
you want, avoiding hallucinations, and even saving money, I will
look at it from a slightly different perspective in this chapter:
prompting as programming in natural language. Then, we'll move on
to the most valuable resource of our time—data—and best practices
for Al teams to take care of their organization’s data assets. We'll
see why well-governed and curated data is a necessity for the vast
majority of generative Al applications in the enterprise. Finally, I'll
talk about how the composability principle of modern-day natural
language processing (NLP) designs allows Al engineers to create
ever more complex and powerful LLM applications.

21

Model Selection

For someone just starting their generative AI journey, the sheer
number of language models—built for different purposes, sizes, lan-
guages, and modalities—can be overwhelming. But staying on top
of what is possible with LLMs is one of the most important practi-
ces of an Al engineer. How do they do that? Often, those seeking
information about the best, fastest, or otherwise high-performing
models are directed to leaderboards and benchmarks. Leaderboards
run a series of standardized tests on LLMs and then use the results
to rank the models from best to worst. They are useful for under-
standing how well a new LLM performs against established models.
They also give you a good sense of what metrics the broader Al
engineering community uses to understand the quality of a model’s
performance. Another popular and entirely community-driven for-
mat is the “Chatbot Arena Leaderboard” hosted by LMSYS, which
uses an Elo rating system (like chess) to determine which chatbots
users prefer.

But while these can be useful tools for getting an overview of
what’s out there, they’re more oriented toward research rather than
business. Unlike academic research, business use cases must cater
to many different requirements from various stakeholders. When
deciding which LLMs to use in your product, it’s therefore impor-
tant to ask the right questions:

o Do your business requirements dictate that you work with an
open source model, or can you use one of the proprietary LLM
APIs?

« How important are issues like latency (that is, the time between
sending the request and receiving an answer) to your users?

o Does the model need to cater to specific languages or other
skills, such as programming languages?

» Would your application benefit from a larger context window?

To narrow down the range of models, it makes sense to talk to the
AT engineers in your circle who know the most about these issues.
They, in turn, often keep up with model developments through
social media and by following thought leaders in the space. Note
that, as we've highlighted in the previous chapter about the iterative
process of Al product development, you do not need to set your

22 | Chapter4:The Al Team’s Toolkit

https://oreil.ly/mHh_I

model of choice in stone at any point in your product journey. In
fact, it often makes sense to start with the most powerful, state-of-
the-art LLM and experiment with it to understand what’s possible.
Then, you can plug in smaller models associated with lower cost and
latency and see if you can use prompting and other techniques to get
them to perform at a level similar to the larger model.

Prompt Engineering

As we developed our hypothetical use case of a news digest app
in the previous chapter, we've already got a glimpse of the role of
the prompt in the context of LLMs. While AI practitioners have
explored the capabilities of prompting, it's become increasingly clear
that with LLMs, the prompt acts as a programming interface for
users. More than just the query input interface, prompts can be
used to transmit data to the LLM, as well as guidance through
examples in what is known as “few-shot prompting,” and measures
to prevent unwanted behavior, like hallucinations. To use an LLM
in an effective manner, Al teams need to understand that the right
prompt can greatly affect the model’s performance. The emergence
of structured prompting languages such as ChatML exemplifies the
move toward more formalized and efficient interaction with LLMs,
resulting in a safer and more controlled conversation flow.

Mastering the art of prompting takes practice. While there are many
more or less evidence-based tips on how to prompt effectively, the
most consistent advice is to be overly explicit and literal about what
is being asked of the model (since LLMs are bad at reading subtext),
and to double down on any points that are particularly important.
Subject matter experts (SMEs) are often good writers of prompts
because they have a deep understanding of their domain. For niche
topics, it often makes sense for Al engineers to team up with SMEs,
since their expertise can lead to more precise and effective prompts.

Because different user inputs can elicit a wide variety of responses,
its important to use the prompt to control and direct the LLM’s
output. This includes defining the tone, length, and whether the
response should include citations. These requirements will generally
depend on the specific needs dictated by your use case. Once a
prompt is used with an actual LLM, its responses will in turn lead to
adjustments to the prompt.

Prompt Engineering | 23

https://oreil.ly/rAHqB

Among Al engineers, prompting is seen as a fun and creative
process, where they can use the power of words to unlock Al
capabilities. However, small adjustments to the prompt can lead
to disproportionate variations in the LLM’s output: sometimes even
a small change in punctuation can change the result significantly.
A curious and experimental attitude is therefore crucial to prompt
engineering.

It’s also useful to test prompts with real users. This can help deter-
mine not only how well a prompt works, but also whether it’s ready
for real-world use. After all, a prompt can always be tweaked and
improved, so user feedback is an essential part of determining when
it’s really ready. As we'll see later in this chapter, documenting your
work is crucial in any Al project. The same holds true for prompts:
since their shape and wording have such a high impact on the LLM’s
output, it’s a good idea to track all changes to the prompt and how
they affect the results.

The Role of Data

Without data, ML/AI as we know it today wouldn’t exist. You've
probably heard some variation of this sentiment a million times. It’s
clear that large and high-quality datasets are essential for training
ML and AL but what is their role in product development?

More than just a necessary resource to feed LLMs, enterprise-
specific data can actually be what differentiates your product from
the competition. Think about it: across your industry and beyond,
all AT teams have equal access to the same LLMs—but for a partic-
ular company, it’s the proprietary data, collected over the organiza-
tion’s lifetime, that makes it unique and sets it apart. With that in
mind, let’s look at the three main ways that data can enrich, shape,
and characterize LLM-based applications.

Training and Fine-Tuning

Ninety-nine percent of organizations will never train an LLM from
scratch. Not only is LLM development prohibitively expensive, its
also unnecessary, given the wealth of models already available.
There is, however, a technique for further adapting an existing LLM
to a specific use case. Fine-tuning is the process of improving the
parameters of a pretrained model to fit a particular use case. This
use case is represented by the domain-specific data the model sees

24 | Chapter4:The Al Team’s Toolkit

during the fine-tuning process. For example, you might fine-tune an
LLM used in customer service to match the voice of your brand bet-
ter, using transcripts of previous real-world interactions with your
clients. Or, if you're building a RAG setup for business intelligence
tables, you might want to fine-tune the retrieval model with the
schemas in your database.

Fine-tuning requires much less data and computing power than
training a model from scratch, and it has been used successfully to
adapt a model to a particular tone or task. As a technique for feeding
information into the model, however, fine-tuning is much less effec-
tive than RAG. That’s because it doesn’t reliably remove hallucina-
tions. Moreover, if your goal is to update the LLM’s knowledge base,
this means that you would have to fine-tune it for each new piece
of data, which in turn will increase your costs significantly. How-
ever, for smaller language models, such as those used in retrieval,
fine-tuning is often useful because it improves performance without
consuming too many resources.

Evaluation

To understand how well your model or overall application is per-
forming on your specific use case, it’s necessary to perform periodic
quantitative evaluations. To do this, you need annotated data that
represents your use case as accurately as possible. This data is then
run through the model and various metrics are used to quantify
how well the model’s predictions match your own annotations.
Note that while quantitative evaluation of retrieval and classification
tasks, for example, is well established, it's much harder to quanti-
tatively evaluate LLMs in an equally satisfactory way—though I'll
discuss some promising approaches in Chapter 5. It’s therefore often
complemented with user feedback—a much more high-quality and
costly method for LLM evaluation that is based on real users rather
than evaluation datasets.

Retrieval Augmentation

Large language models are powerful but slow and expensive com-
pared with other models. Retrieval augmentation, which we already
discussed several times in this report, uses fast data-matching tech-
niques to preselect the most appropriate data from your database
to pass on to the more resource-intensive LLM. The type of data is
completely dependent on your application, and could be anything

TheRoleof Data | 25

from business intelligence tables to social media posts or comic
books. Whats clear is that, in a retrieval-augmented setup, the qual-
ity of the data directly affects the quality of the LLM’s output. That’s
why it's important to have data curation practices in place that
ensure the data is current and accurate.

Best Practices for Data Curation

In a survey sponsored by AWS among chief data officers, poor data
quality was seen as an obstacle to Al adoption at the same scale as
“finding a use case” (listed by almost 50% of respondents).' Keeping
data relevant and of high quality is an ongoing task. Just as real-
world products must adapt to changing user needs, data must evolve
with them to ensure it still reflects your use case. Regular quality
checks and updates ensure that an LLM in production continues to
perform optimally as conditions change. Stress testing LLM applica-
tions with complex data points can also provide valuable insight into
the resilience of these systems.

The annotation process is a cornerstone of data quality. Annotation
(also known as labeling) describes the process of attaching labels to
your data, which the model then has to predict. At its simplest, these
labels or categories can be binary, such as in retrieval or a basic type
of sentiment analysis. However, when dealing with natural language,
annotations are often much more complex. For example, annotating
response sequences for extractive language models requires labelers
to determine the start and end token of a response.

Much like teaching people to drive, annotation is a repetitive task
that still requires a lot of attention. As we've seen, the quality
of your annotated data directly affects downstream tasks such as
fine-tuning, retrieval augmentation, and evaluation. To ensure effi-
cient workflows, it's important for organizations to establish clear
and understandable guidelines that are tested on real data before
they’re put into practice. Peer reviews and cross annotations ensure
that annotators are applying the guidelines to the data in a consis-
tent manner.

1 AWS, “2024 CDO Insights: Data & Generative AI”.

26 | Chapter4:The Al Team’s Toolkit

https://oreil.ly/VjOAr

With the frequent iterations of Al product development, it is easy
to lose track of what data was used in a given cycle. Thorough
documentation is therefore essential—not only for code, but also
for datasets. It helps keep track of important metadata, such as
when and where a particular data point was created, as well as the
context in which it was created. Depending on your use case, you
might want to augment your internal company data with external
datasets. Al teams need to make sure they understand that data
well before using it to build any products, by using established data
exploration techniques from data science. It's important to know
the origin of the data, the annotators involved, and the conditions
under which the annotations were made. This transparency is not
only helpful for current use, but also for future reference and under-
standing.

Advanced Composable LLM Setups

LLMs are advanced pieces of software all on their own, but the
composability principle in modern Al applications makes it so that
we can, in theory, build increasingly complex and powerful architec-
tures. For example, it allows us to use multiple language models in
one product, or even embed different modalities like images, sound,
and text. Here, I want to take a brief look at some advanced concepts
that will likely gain traction in the following months.

What Is Composability?

Composability is a well-established concept in applied NLP. It allows
AT engineers to build modular applications consisting of multiple
parts that work independently but can be combined for a different
experience. The classic RAG application uses this principle, for
example, by stacking a generative LLM on top of a retrieval module,
resulting in a product that is more powerful than the sum of its
parts. In addition to this extended capability, composable systems
have two major advantages:

o Parts of the architecture can be replaced independently. This is
critical in a field that evolves as rapidly as LLM development.

o Models can be evaluated independently, making it easier to
find sources of error in a complex composed system. This is
especially important since some language models are easier
to evaluate than others. For example, there are several useful

Advanced Composable LLM Setups | 27

metrics for evaluating retrieval quality, while LLM evaluation is
only partially solved and only for specific setups.

Loops and Branches

Simple LLM system designs, such as a basic RAG setup, are based
on a unidirectional graph with a starting point (the input query) and
an end point (the LLM’s response). This linear graph has only one
possible trajectory, as can be seen in the sketch in Figure 4-1: upon
receiving the user query, it's used by the retriever to identify relevant
documents from the database. Those documents are then embedded
in the prompt along with the query and sent to the LLM, which
generates an answer.

Userinput ATTTI Pipeline
(query) Retriever]—b[Prompt]—V‘ LM output
query, g (response)
A
v
Document Documents

database

Figure 4-1. A sketch of a straightforward RAG pipeline

However, graphs can be much more complex, and LLMs have
the potential to be used in more intricate setups. For example,
graphs can contain branching structures where the same starting
point can lead to several different paths. A common way to
improve retrieval performance is to use a hybrid retrieval setup
that combines two categorically different retrievers, whose results
are combined before theyre passed on to the LLM. This setup
often includes one based on lexical similarity and another based
on semantic similarity, resulting in a higher overall recall. Other
pipelines use classifiers that examine the query or some other part
of the pipeline and route it to different workflows, each designed to
solve a specific task.

One particular Al system design that takes modularity to the
next level is the agent. Agents are complex pipelines that can
traverse multiple trajectories depending on the task. They make
use of an LLM’s reasoning abilities by employing it to develop

28 | Chapter4:The Al Team’s Toolkit

advanced response strategies for complex queries. Agents have mul-
tiple “tools” at their disposal, which they use iteratively to arrive at
the optimal answer. They can perform autonomous planning and
decision making, using the tools to accomplish a given task without
explicit instructions. Agents use branching to navigate different
paths and looping to potentially repeat actions. Another common
component in agents is an implementation of memory—most nota-
bly, it is used by chatbots (also known as conversational agents) to
keep track of a conversation. Figure 4-2 shows an agent setup with
access to multiple tools. In the figure, at least one of the tools is
connected to a database (thus, it can perform document retrieval on
demand, if the agent’s plan deems it necessary).

Pipeline
output
(response)

User input
(query)

»{ Databases

Figure 4-2. A sketch of an LLM agent that can use four tools and
memory to solve a task

As part of their strategic planning capabilities, agents decide when
they have completed the task and are ready to respond. Autono-
mous agents may be the closest we've come to artificial general
intelligence (AGI). But for now, agents that go beyond the capabil-
ities of regular chatbots are still too complex a product for most
production use cases. And if it’s hard to reliably evaluate LLMs,
imagine how much harder it is for such a complex system with
many moving parts that may be integrated with multiple LLMs. But
at the rate we're seeing LLMs evolve, it’s likely that the big agent
moment is near.

Advanced Composable LLM Setups | 29

Putting the Pieces Together

Now that we've learned about some of the key tools, skills, and
knowledge that AI teams need to curate, it's time to regroup and see
what we've learned about product development with Al In the next
chapter, I'll talk about why the approach I've outlined is essential for
successful Al adoption in the enterprise, and what other aspects you
need to consider to arrive at a mature, LLM-powered product.

30 | Chapter4:The Al Team’s Toolkit

CHAPTER 5
From Pilot to Product

An AI product that does not make it into production is not a
product at all, but merely a demonstration of the technology’s
capabilities. There’s no need to prove that LLMs can do amaz-
ing things—we've all experienced their skills firsthand. As I have
emphasized throughout this report, the real challenge lies not in
using these models to process your organizations data, but in inte-
grating them seamlessly into a relevant business use case. Very few
companies have been able to do this. With the obvious potential of
LLMs, that will have to change.

AT teams that build their pilots with a business use case in mind
are much more likely to see them evolve into mature products than
teams that build narrowly focused IT demos. Product leaders must
guide their teams through the thick and thin of the AI development
cycle so that they can build robust, scalable solutions that evolve and
thrive in a production environment. In this chapter, I offer a few
final pieces of advice to help demystify this pilot-to-product journey.

Scalable Pilots

Most people who have never brought an actual Al product to pro-
duction are unaware that the development cycle can realistically
consist of hundreds of iterations. Each iteration can change the
direction of the product, the user base it targets, the technology it
uses, and the data it processes. A pilot therefore serves the dual pur-
pose of proving the concept and laying the groundwork for future

31

product development. From there, you must iterate and experiment
at scale to get something into production.

When designing your use case, it's important to avoid creating a
pilot that is too narrow in functionality, as this will make any mod-
ification or scaling feel like an impossible task. Design the pilot
with the ability to add new models, integrate parallel processing
paths, or scale operations without requiring a complete system over-
haul. A well-designed pilot should transition smoothly into a robust
product, allowing for growth and evolution without sacrificing core
functionality.

Getting Ready for Production

Once the prototype has been refined to the expected level of matur-
ity, it is time to move it into production. This is where the solution is
truly tested by time, users, and market demands. It’s critical to have
a solid framework for monitoring and managing the product after
deployment; this is where MLOps comes in.

MLOps stands for machine learning operations. It extends the
principles of DevOps to software projects that integrate machine
learning. MLOps provides the tools to plan the software lifecy-
cle holistically, from development to deployment to operations in
production. The goal of MLOps is to create a sustainable and
secure ecosystem for your Al-powered solutions—because deploy-
ing a complex ML-based product to production can be challenging.
DevOps engineers are in high demand since they have the broad
skill set needed to ensure the reliability, scalability, and performance
of the system. This includes making decisions about the application’s
backend architecture, data storage, and computing power. However,
there is one aspect that is unique to the deployment of LLM-based
products that I'd like to focus on here: monitoring the performance
of a generative language model.

The Challenge of Monitoring LLMs

To monitor an application in production, engineers define the met-
rics they want to track over time. These might include the number
of requests processed in a minute, hour, or day, and the time elapsed
between a request and a response. They might also want to monitor

32 | Chapter 5: From Pilot to Product

the rate of negative feedback from users, or the topics that appear
most frequently in their queries.

LLMs are much harder to monitor than simpler, deterministic
machine learning models, such as sentiment classifiers, because they
are so creative that it often requires a human to reliably judge their
quality. Well-established NLP tasks like automated translation and
summarization traditionally work with lexical metrics such as BLEU
(Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) that quantify how similar the
words of a machine-produced output are to that of a human-
annotated one. The advent of LLMs, however, has intensified the
search for robust metrics that can compare two textual sequences
based on semantics rather than lexical similarity. In particular,
RAG applications have proven to be particularly fertile ground for
such metrics. Using a transformer model—the same neural network
architecture that powers LLMs themselves, albeit on a much smaller
scale—these new metrics measure the groundedness of a generated
answer in the documents on which it is based. Combined with the
well-established evaluation methods that have long existed for the
retrieval step itself, such as recall and mean reciprocal rank (MRR),
these semantic metrics allow us to get a fairly accurate idea of the
usefulness and correctness of a given RAG application. In the future,
I hope to see a lot more of these kinds of metrics for a variety of
purposes in LLM setups.

Keep an Eye on Al Regulation

As the AI landscape continues to evolve, so does the regulatory
environment surrounding it. With this new technology comes the
responsibility to ensure that your operations comply with emerg-
ing legislation in relevant jurisdictions. A proactive approach to
data governance involves security and legal experts who can assess
potential risks and develop comprehensive mitigation strategies,
especially when dealing with sensitive and proprietary information.
Its also important to carefully review vendor contracts to ensure
robust data protection. To protect their own data and that of their
customers, companies should look for vendors that allow them
to opt out of storing their prompt history and that can credibly
demonstrate that the data submitted will not be used to train future
models. Of course, excluding personally identifiable information
(PII) from hosted LLM interactions is also critical. The path to

Keep an Eye on Al Regulation | 33

responsibly harnessing the potential of AI requires a comprehen-
sive understanding of regulatory frameworks and a commitment to
secure, ethical, and compliant operations. In addition to mitigating
risk, this approach builds user confidence, which is crucial to the
successful adoption of any new technology.

34 | Chapter 5: From Pilot to Product

Building Meaningful Al Products

In this report, I hope to have shed some light on the unique chal-
lenges of Al development and helped you get a clearer idea of what
it takes to build meaningful products with LLMs. Following the
general release of the ChatGPT browser interface, organizations and
individuals alike went through a phase that can be described as a
mixture of fear, awe, disbelief, and dollar signs. As we enter a new
phase of LLM adoption, it’s imperative that thought leaders refocus
their own approach to Al Product people across all industries need
to understand the tangible value this technology can bring to their
organizations—and what they need to facilitate for it to become a
reality.

You now understand the critical importance of developing a com-
prehensive use case—together with a cross-functional team of Al
engineers, business representatives, and subject matter experts. You
have seen that this new technology requires visionary and pragmatic
product leads who know how to ask the right questions. You've
seen that an agile MLOps workflow with frequent, small changes
to the product is as important as ever in the age of generative Al
You've explored the importance of data best practices and monitor-
ing LLMs in production using a mix of metrics. Finally, you've
learned how to avoid the pitfalls of a nonscalable, narrowly focused
IT demo that collapses at the slightest change or attempt to scale—
and instead build scalable, visionary, and secure products that can
meet the unique business needs of your organization.

Building Meaningful Al Products | 35

About the Author

Isabelle Nguyen has a background in linguistics and a master’s
degree in NLP and machine learning. She currently works as a
technical content writer at deepset. Her main focus is to demystify
the intricacies of generative Al and LLMs and make these complex
topics accessible to a wide audience.

	deepset
	Copyright
	Table of Contents
	Introduction
	Chapter 1. AI in the Enterprise
	AI in Context
	AI Today Is Mostly Machine Learning
	An Algorithm Trains a Model with Data
	A Trained Model Is Defined by Its Parameters
	There Are Many Different Kinds of Language Models

	So What Exactly Is an LLM?
	A Snapshot of Language Models in the Enterprise
	Four Sample LLM Applications
	Sophisticated Recommendations for Legal Professionals
	Conversational AI for Technical Documentation
	Automating the Collection of Information from Earnings Reports
	Condensing Political Discourse for News Consumers

	Pivoting Attention from Technology to Product

	Chapter 2. Building an AI Product
	What Is an AI Product?
	Considerations for Building with AI
	Defining a Use Case
	Understanding the Technology
	Assembling the Right Team

	From Product Ideation Toward Planning

	Chapter 3. The AI Product Development Lifecycle
	An Exemplary Case Study: Building a News Digest App
	Developing a Product Hypothesis
	Defining the Problem
	Identifying a Technical Solution

	Prototyping, Experimentation, and Evaluation
	Shipping a Prototype

	Refinement
	Back to the Drawing Board
	Another Round of Experiments, Refinement, and…More Experiments

	Chapter 4. The AI Team’s Toolkit
	Model Selection
	Prompt Engineering
	The Role of Data
	Training and Fine-Tuning
	Evaluation
	Retrieval Augmentation
	Best Practices for Data Curation

	Advanced Composable LLM Setups
	What Is Composability?
	Loops and Branches

	Putting the Pieces Together

	Chapter 5. From Pilot to Product
	Scalable Pilots
	Getting Ready for Production
	The Challenge of Monitoring LLMs
	Keep an Eye on AI Regulation

	Building Meaningful AI Products
	About the Author

